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An analytic solution of the equation for the covariances in a Kalman filter used to estimate the coordinates of an aircraft in a
standard navigational system is presented and the long-term asymptotic forms of this solution are obtained.

In the general case the equations of a Kalman continuous linear filter [1] consist of the equations of
the controlled process

dxidt = A()x + u(t) + w,, x(0) =x, ¢))
the linear observation conditions
z = H(t)x + v()* w, )
the equations
dyldt = Aty + u(f) + RH'S(z - Hy - v(8)),  y(0) =g 3)
for the estimate y for the state vector x, and the covariance equations

dR/dt = AR + RB + C - RDR 4)
R(0) = Ry = cov(xq, xg) (5)

In (1)(5) x = x(¢) is the n-dimensional phase column-vector formed by the generalized coordinates
of the controlled dynamical system, z = z(¢) is the p-dimensional column-vector that becomes known
during the observation process (the observed vector), y = y(t) is the n-dimensional column-vector
estimating x computed from (3)(5), R = R(t) = cov(x—y,x—y)isa symmetric (n X n)-matrix computed
from (4) with the initial condition (5), 4 = A(?) and H H(t) are given continuous matrices of
dimensions n x n and p X n, respectively, such that B = AT, u(t) and v(¢) are known time-dependent
deterministic control functions appearing, respectively, in (1) and (2), xp is a Gaussian random vector
with prescribed mean yg and covariance matrix Ry, and w, and w, are Gaussian white noise independent
of one another and of x, with zero mean and with prescribed continuous correlation density matrices
C = C(t) and S = §(t) (of dimensions n X n and p X p, respectively)

cov(wy (1), wi(1)) = C(NB(t - 1), cov(w.(1), w,(T)) = S()d(t —T)
COV(“’A(’)’ X()) = COV(WZ(I), X()) = COV(WX(I), wz(T)) =0
D =D(8) = H' (S (OH(D)

Everywhere above t = 0 and 1T = 0.

The analytic solution of Eq. (4), which is a Riccati matrix equation, enables us not only to solve (3)
analytically (or numnerically with smaller errors), but also to provide an accurate estimate of the potential
precision of the controlled process. In particular, this applies to cases when the Kalman filter algorithm
is applied to real cynamical systems for which the potential precision determines, in the end, whether
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or not it is economical to develop the system in nature. The precision is determined by the asymptotic
behaviour (as  — +e0) of the matrix elements of R.
If a special solution R = P(t) of (4) is known, then (4) can be reduced to a linear equation by the
substitution R =T+ P,Q =
dQidt=-QA,-B,Q+D (A;=A-PD,B;=A}) (6)

If A, B, C and D are constant matrices and P(f) = P(0) is a stationary solution of (4), i.e. a solution of
the algebraic Riccati matrix equation

AP +PB +C - PDP =0 )
then we make the substitution
Q=eHGe ™M < T=eMG ™
in (6), which converts (6) into the system
G =% DeM'
having the analytic solution

o) = e'B"{G(0)+_'[ eB"De""’ds}e“A"
0
G(0)= Q(0)=(Ry - P)™! ®

-1
1
R(t) — P+eA|I {G(O)+J‘ eB|.\‘DeA|Sds} eBlt
0

We shall use this method to find an analytic solution of the covariance equation for a number of
standard navigational systems [2] which use the Kalman filtration algorithm.

Problem 1 (Four-dimensional filter). For the most widely used version of the construction of a
navigational system consisting of one inertial navigational system, in the cyclic algorithm for estimating
the parameters of vertical motion of an aircraft using an aneroid altimeter and a radio altimeter in the
case when the vertical accelerometer signal is used as the control interaction, the observation and control
conditions of the controlled process [2, p. 160] have matrices

0 1 00 ‘
A_OO—IO H_lOOO
oo oof 1o o 01
00 060
C = diag(0,¢%,0,0), S =diag(a2,b7?) ®)
D = diag(a®.0,0,b), Ry = diag(o,z,og,og,ci)
wherea > 0,b > 0,c > 0,0;>0( = 1,...,4) are constants.
The solution of the matrix equation (7) yields [3]
\/2c/a3 cla 00
pf c’a 2¢°/a 0 0 (10)
0 0 0 0
0 0 00

Equation (6) for the components 6; (i,j = 1, . . ., 4) of the symmetric matrix Q takes the form
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é” = 469“ + 402912 + a2, 922 = —2912, 612 = "9" + 299]2 + 202922
614 = 26914 + 202924, 624 = —614, é]} = 2%13 + 262923 + 012 (11)

923 = —913 + 922, 633 = 2923, 634 = 024, 944 = b2
where

0 = VacR2 12)

The solutions of (11) are given by the following formulae as functions of the dimensionless time
parameter T = 6¢

8,,(1) = (e, / 2)[(C, - C,5in 21+ C; cos21)e’* 1]

B2 (t) = (&, / 2)e**[-C, +(C, - C3)sin 2T (C, + C3)c0s21)

8,5, (2) = 0,3[(C| + C; cos2T+ Cy5in21)e?* 1]

B,3(2) = ot3[e* (D, cos T+ D, sint) — 1 - (C; sin 21T+ C, cos 21)e?"]

853(t) = oy[e*(—(Dy + Dy)sinT+(D, — D;)cosT)+

+2+€**(C, +(C; + Cy)sin 21+(C, - C;)cos 21)]

B33(1) = 205(-2D, + C; - C; +2e*(~D; sin T+ D, cos 7) +
+41+ €% (C, + C, 5in 21— C, cos 21)]+ 03>

B, (1) =(b?710)(T+M), O, =0, =0, =0 (13)
Taking (5) and (9) into account, we set

o, =a’/(20)*, k=1..,5 A =20%0;-1, A,=c’a; -1

Ag=2AA,-1, C =4(A +A,+1)/Ag+2

G, =-1-4(Aj +1)/ Ay, Cy=-1-4(A,+1)/ A,

D,=C,+1, D,=C;-C, -1, n=0/(bc3)
in (12). Finally, we have

0
® 0 pu P2 O 0, 6, 6
R= I 0=Q '+ p, py Of Q=[6, 6y 6y (14)
where
P =20/a%, p,=401a%, p,=20"/a%, r,=0/(b*(t+n)) (15)

The evaluation of the inverse matrix in (14) involves finding det Q = g, for which, using (11), we obtain
the following equation by differentiation

dqldt = 4q + 20,(8,053 ~ 62) (16)
From (13) it follows that
0,033 — 82, =2a2[(C, + C, cos 2T+ C, sin21)e?* - 1] x
x[2¢"(~D, sin T+ D, cos ) + 41+ €°*(C, + C, sin 27 - C; cos 2T) +
+1- D, +037 / (20,5)] - 03 [€*(~(D, + Dy )sin T+ (D, - Dy )cosT) +
+2 + 2% (C, +(C, + G;)sin 21+ (C, — C;)cos 21)]? |

an
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We shall find the asymptotic behaviour (as ¢ — +<) of the elements of the matrix R. The main term
in (17) has exponential growth and equals

20564 4(A; + Ay + 2)/Ag + 1] = Aett

This is the only resonance term on the right-hand side of (16). Consequently, for A > 0 (this assumption
will henceforth be retained)

q(t) ~ (9(0) + 20,,AT)e?T, T — +oo
and
Iy — p1il ~ 0/(@1) = 1/(a%), t— +oo (18)
By analogy
0,,05; — 035 = 402Ae%T + ..
in connection with which
l2; — pl ~ 46%/(a%t) = 40%/(a%t), t— +oo (19)
Furthermore
0012 ~ ol ~ 20%/(a%1) = 20/(a%), 1 —> +oo (20)
Formulae (18)(20) determine the asymptotic behaviour of the matrix elements
rn =0, riz =052, rpp =0

of R for large . Moreover, according to these formulae, a characteristic criterion for ¢ to be “large” is
that the ratios

1 1 ; 1
@07 ipn=os, 48%@)ipp=_, 207 :ippp= p
should be small. Therefore, t should be considered large if
1 s L
T €ler> o
We find the asymptotic behaviour of the other elements of R
I’i3|=|(e|2623 - 922913) / ql~ 292 /(azt)
|r23|=|(9129,3 —9“923)/q"" 493 /(azt)
Irsl~40% 7 (a%t); Iryl~1/(b%), t— +oo 1)

Problem 2 (Three-dimensional filter). During a flight over very rugged terrain and in the mountains
substantial errors occur in the radio altimeter channel either in the form of the high-frequency
component of the terrain field or as errors due to the inconsistency between the realization of the field
transducer and the realization obtained from the memory unit according to the signals from the
navigational system. In this case it is necessary [2, p. 262] to change from a four-dimensional filter to
a three-dimensional one, which is connected with the deviation of the radio altimeter signal. In general
notation, this corresponds to the matrices

01 O
A=10 0 -1 |,
00 O

H =11,0,0ll
S=la™2
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C = diag(0,c%,0), D =diag(a®,0,0), R, =diag(c},03,03)

The solution of the matrix equation (7) has the form (10) with the last row and the last column removed.
The matrix R = R(t) is equal to the matrix © outlined in (14) and defined by (15). It follows that all
the formulae and asymptotic expressions obtained above hold for R.
It is interesting to compare the derivation of (18)—(21) with the results of [4] for the discrete version
of the problem (the latter being given in the braces)

29+ 1 { 9}
By~ = §~—
g2 gl att

40> 40° {~ 192)
a’t j

Similar differences occur in the asymptotic expressions for other terms of R(¢) too. They are connected
with the fact that the simplifying assumption D, — 0 [2, p. 265], which distorts the time scale, is made
in the solution in [4].

Iy ~—5+—o—
£ R D

Problem 3 (Two-dimensional filter). The consideration of a navigational system consisting of all three
channels of an inertial navigational system, which measure the coordinates of the spatial and angular
position of the aircraft, a radio altimeter and an on-board computer with a ground topography map
stored in the memory (barometric instruments are not included) leads [2, p. 222] to problem (1)-(5)

with
A 01
“lo o

C = diag(0,¢?), D=diag(a®,0), R, =diag(c},03)

. H=l,01, S=la™

The model of errors in determining the coordinate and velocity of a horizontally flying aircraft using
an inertial navigational system leads to the same problem [2, p. 159].

The problem was studied [2] under assumptions which distort the time scale. In the present paper
exact solutions and asymptotic approximations are obtained.

For the problem under consideration (6) takes the form of the first three equations in (11), and its
solution is given by the first three formulae in (13). For such a choice of functions

q=0,8, -8}, =3¢ /4
g = (CY = C} - CHe*™ - 2(2C, +(Cy + C3)c0821+(C; - G, )sin 27)e?" +2
The resulting formulae yield an exponentially decaying asymptotic forms for the matrix elements r;;

3
490" 1+0(e)

P4

20 _
ﬁ|=Pn+en/q=ZTU+o@2”l =
2

Hy = %(HO(«?‘Z’)), T +oo

as opposed to the power function behaviour in formulae (5.103) of [2] obtained under the assumption
S; = 0, which distorts the timescale (see [2, p. 162]).

‘We remark that linear models of Kalman filtering usually provide an adequate description of the actual
processes involving the observation of non-linear objects only within bounded time intervals. Therefore
the results of this paper can only be applied once the duration of these intervals has been compared
with the characteristic time constant introduced in (12).

The research reported here was supported financially by the Russian Fund for Fundamental Research
(93-011-1725).

REFERENCES

1. KRASOVSKII A. A., BELOGLAZOV 1. N. and CHIGIN G. P, Theory of Correlation-extremum Navigational Systems. Nauka,
Moscow, 1979.



92 P. B. Gusyatnikov and M. D. Khristichenko

2. BELOGLAZOV 1. N, DZHANDZHGAVA G. I. and CHIGIN G. P, Foundations of Geodesic Field Navigation. Nauka,

Moscow, 1985.
3. BONDARENKO A. V. and GUSYATNIKOV P. B., A search problem. In Mathematical Questions in Physical and Technical

Problems. 1zd. Mosk. Fiz.-Tekhn. Inst., Moscow, 1987, pp. 12-19.
4. CHIGIN G.P. and SILAYEV A. 1., The synthesis of algorithms for estimating the parameters of vertical motion of an aircraft.

Iz Akad. Nauk SSSR, Tekh. Kibern. 1, 177-188, 1982.
Thanslated by TJ.Z.



