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An analytic solution of the equation for the covariances in a Kalman filter used to estimate the coordinates of an aircraft in a 
standard navigational ,,~tem is presented and the long-term asymptotic forms of this solution are obtained. 

In the general ease the equations of a Kalman continuous linear filter [1] consist of the equations of  
the controlled process 

dx/d t  = ACt)x + u(t)  + w x, x(O) = Xo (1) 

the linear observation conditions 

the equations 

z = n ( t ) x  + ~ ( 0  ÷ w,  (2 )  

dy/dt  = A( t ) y  + u(O + R t f r S - l ( z  - Hy  - D(t)), y(O) = YO (3) 

for the estimate y for the state vector x, and the covariance equations 

dRId t  = A R  + R B  + C - R D R  ( 4 )  

R(0) = Ro = cov(xo, Xo) (5) 

In (1)-(5) x = x ( t )  is the n-dimensional phase column-vector formed by the generalized coordinates 
of the controlled dynamical system, z = z ( t )  is the p-dimensional column-vector that becomes known 
during the observation process (the observed vector), y = y(t) is the n-dimensional column-vector 
estimatingx compoted from (3)-(5), R = R ( t )  = coy  ( x - y , x  - y )  is a symmetric (n x n)-matrix computed 
from (4) with the initial condition (5), A = A ( O  and  H = H ( t )  are given continuous matrices of 
dimensions n x n a n d p  x n, respectively, such that B = A T, u ( t )  and ~(t) are known time-dependent 
deterministic control functions appearing, respectively, in (1) and (2), x0 is a Ganssian random vector 
with prescribed meany0 and covariance matrix Ro, and wx and wz are Gaussian white noise independent 
of one another and of x0 with zero mean and with prescribed continuous correlation density matrices 
C = C( t )  and  S = S( t )  (of dimensions n x n andp  xp ,  respectively) 

cov(wx(t), w. (x ) )  = C ( t ) 8 ( t -  x),  cov(w:(t), w.(~)) = S( t )5( t  - x)  

cov(wa(t), x0) = cov(wz(t) ,  x0) = cov(wx(t), Wz('¢)) = 0  

D = D(t)  = HT(t)S - I (OH(t)  

Everywhere above t I> 0 and x 1> 0. 
The analytic solution of Eq. (4), which is a Riceati matrix equation, enables us not only to solve (3) 

analytically (or nmnerieally with smaller errors), but also to provide an accurate estimate of the potential 
precision of the controlled process. In particular, this applies to eases when the Kalman filter algorithm 
is applied to real dynamical systems for which the potential precision determines, in the end, whether 
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or not it is economical to develop the system in nature. The precision is determined by the asymptotic 
behaviour (as t ~ +**) of the matrix elements of R. 

If a special solution R = P(t)  of (4) is known, then (4) can be reduced to a linear equation by the 
substitution R = T + P, Q = T -1 

dQ/dt = --QAI - B tQ + D (Ai = A - PD, Bi = A l) (6) 

If A, B, 'C and D are constant matrices and P(t)  =-- P(O) is a stationary solution of (4), i.e. a solution of 
the algebraic Riccati matrix equation 

AP + PB + C -  PDP = 0 (7) 

then we make the substitution 

Q = e-t~'Ge -&t ¢:~ T = e&tG-ie ~t 

in (6), which converts (6) into the system 

= e~tDeAI t 

having the analytic solution 

Q( t )=e -n~ t (G(O)+!  e~SDe&Sds}e -&t 

G(0) = Q(0) = (R o - p)-I (8) 

{ }-' 
R(t)  = P + e A'' G(O) + eBISDeAJSds e ~t 

We shall use this method to find an analytic solution of the covariance equation for a number of 
standard navigational systems [2] which use the Kalman filtration algorithm. 

Problem 1 (Four-dimensional filter). For the  most widely used version of the construction of a 
navigational system consisting of one inertial navigational system, in the cyclic algorithm for estimating 
the parameters of vertical motion of an aircraft using an aneroid altimeter and a radio altimeter in the 
case when the vertical accelerometer signal is used as the control interaction, the observation and control 
conditions of the controlled process [2, p. 160] have matrices 

I°'°° H I Ir 0 0 -I  0 1 0 0 0 
A= 0 0 0 0 ' H =  0 0 0 1 

0 0 0 0 

C = diag(0,c 2,0,0), 

D = diag(a2.0,O, b2), 

wherea  > 0, b > 0, c > 0, oi > 0 (i = 1 , . . . ,  4) 
The solution of the matrix equation (7) yields 

S = diag(a -2,b -2 ) 

R o = diag(c~,t~2,a],t~ 2 ) 

are constants. 
[31 

(9) 

o o 

p =  c / a  ~ 0 0 

0 0 0 0 

0 0 0 0 

(10) 

Equation (6) for the components 00 (i, j = 1 . . . . .  4) of the symmetric matrix Q takes the form 
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whe re  

011 :=40011 4--402012 + a 2 ,  ()22 = -2012, ()12 = -011 +20012 4--202022 

014 := 20014 + 202024, 024 ---- --014, 013 = 20013 + 202023 + 012 

023 = -013 + 022, 033 = 2023, ()34 = 024, 044 = b2 

(11) 

(12) 

T h e  solut ions o f  (ILl) a re  given by  the  following fo rmulae  as funct ions o f  the  dimensionless  t ime  
p a r a m e t e r  ~ = 0t 

011(t) = ( a  I / 2)[(C I - C 2 sin 2~ + C 3 cos2x)e  2~ - 1] 

,Dj2(t) = ( a  2 / 2)e2.~ [ -Ci  + (C 2 - C3)sin 2x - (C 2 + C3)cos2x]  

022 (t) ----- (g3[(Ci 4. C2 cos2~ 4- C 3 sin 2x)e 2~ - 1] 

013 (t)  = 0{ 3 [e ~ (D  I cos 'C 4" D 2 sin "c) - 1 - (C  3 sin 2~ + C 2 cos 2~)e 2x ] 

023 (t) = a 4 [e ~ ( - ( D  I + D 2 ) sin x + (D  2 - D i ) cos x) + 

+2 + e2X(C l ÷ (C 2 + C 3 )sin 2~ + (C 2 - C 3 )cos 2z)] 

~D33 (t) -- 2(x 5 [ - 2 D  2 4- C 3 - C I + 2e ~ ( - D  l sin x +/ )2  cos x) + 
-t4"c +e2X(C I + C 2 sin 2x - C 3 cos 2x)] + ~ 2  

044( t )=  (b 2 / 0 ) ( ~ + 1 ] ) ,  014 =024 =034 -=0 (13) 

Taking (5) and (9) into account ,  we  set  

¢x k = a  2 / ( 2 0 )  k, k = l  . . . . .  5; A 1 = 2 a ~ a  3 - 1 ,  A 2 = f f ~ a  l - 1  

Ao = 2AIA2 - 1, CI = 4(Ai +A2 + I ) / A o  + 2  

C 2 = - I - 4 ( A !  + I ) / A  o, C 3 = - l - 4 ( A 2 + l ) / A  o 

D , = C 2 + I ,  D 2 = C 3 - C , - 1 ,  r l=e/(b2a~) 

in (12). Finally, we  :have 

0 0 0  

where 

°l i i i 
0 =['~-1 Pll P12 0 011 012 013 

0 ' 03 + Pi2 P22 0 , ['~= 012 022 023 

0 0 0 013 023 033 
r44 

(14) 

pll=20/a 2, p22=4031a 2, P12=202/a 2, r44=O/(b2('C+TI)) (15) 

T h e  evaluat ion o f  the  inverse matr ix  in (14) involves finding det  f~ ffi q, fo r  which, using (11), we  obta in  
the  following equa t ion  by di f ferent ia t ion 

dqldz = 4q + 20[1(022033 - 0 2 )  (16) 

F r o m  (13) it fo l lo~ ;  tha t  

022033 - 023 = 2 0  2 [(C 1 + C  2 cos 2~ + C 3 sin 2~)e 2~ - 1] x 

x [2e  ~ ( - D  ! sin ~ +/ )2  cos x) + 4~ + e 2~ (C I + C 2 sin 2x - C 3 cos 2~) + 

+ 1 - D 2 + ¢y]2 / (205)]  _ 02 [e • ( _ (D  t + D2 ) sin z + (D  2 - D t ) cos x) + 

+2 + e 2~ (C I + (C 2 + C 3 )sin 2z  + (C 2 - C 3 ) cos 2f)]  2 

(17) 
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We shall find the asymptotic behaviour (as t ~ +oo) of the elements of  the matrix R. The main term 
in (17) has exponential growth and equals 

2~2e4X[4(A1 + A 2 + 2 ) /A  0 + 1] = A e  4x 

This is the only resonance term on the right-hand side of (16). Consequently, for A > 0 (this assumption 
will henceforth be retained) 

q(%) ~ (q(8) + 2oqAz)e 4~, % --> +o,, 

and 

10)11 - P l l  I - 81(a2x)  = 1/(a2t), t ~ +oo (18) 

By analogy 

811833 -- 823 ... = 4 8 2 A e  4x + 

in connection with which 

10)22 --P221 ~ 4831(a2~) = 482/(a2t), t --> +~* (19) 

Furthermore 

10)!2 -P121  - 2821(a21:) = 28/(a2t) ,  t ---> +oo (20 )  

Formulae (18)-(20) determine the asymptotic behaviour of the matrix elements 

r l l  = 0)11, r12 = 0)!2,  r22 = 0)22 

of R for large t. Moreover, according to these formulae, a characteristic criterion for t to be "large" is 
that the ratios 

1 1 1 
(aet) -1 :Pll  = ~ ,  402(a2t) -1 :P22 = 3 '  20(a2t) -1 : P12 = 

should be small. Therefore, t should be considered large if 

1 1 
- ~ l ~ t ~  

We find the asymptotic behaviour of the other elements of R 

I rl31:1(812823 - 822813) / ql ~ 282 / ( a2 t )  

I r231=1(812813 - 811023 ) / ql ~ 483 / (a2t) 

Ir331~ 4841(a2t); Ir441~ l l (b2t), t - ,  +oo (21) 

Problem 2 (Three-dimensional filter). During a flight over very rugged terrain and in the mountains 
substantial errors occur in the radio altimeter channel either in the form of the high-frequency 
component of  the terrain field or as errors due to the inconsistency between the realization of the field 
transducer and the realization obtained from the memory unit according to the signals from the 
navigational system. In this case it is necessary [2, p. 262] to change from a four-dimensional filter to 
a three-dimensional one, which is connected with the deviation of  the radio altimeter signal. In general 
notation, this corresponds to the matrices 

iIo 011 .o0  A= 8 0 -1 , S=lla-211 
8 8 8 



The behaviour of the solution of the covariance equation for a navigational system 91 

C=diag(O, c2,0), O=diag(a2,0,O),  R0=diag(t12,ff2,ff~) 

The solution of the matrix equation (7) has the form (10) with the last row and the last column removed. 
The matrix R = R(t )  is equal to the matrix to outlined in (14) and defined by (15). It follows that all 

the formulae and a:~jmptotic expressions obtained above hold for R. 
It is interesting to compare the derivation of (18)-(21) with the results of [4] for the discrete version 

of the problem (the latter being given in the braces) 

 °,I9 ) 
rl i - a-"2 + a 2-'--t ~ ~ t  

403 402 f 192 ) /-a-Vl 

Similar differences occur in the asymptotic expressions for other terms of R(t) too. They are connected 
with the fact that the simplifying assumption Dx ~ 0 [2, p. 265], which distorts the time scale, is made 
in the solution in [4]. 

Prob/em 3 (Two-dimensional filter). The consideration of a navigational system consisting of all three 
channels of an inertial navigational system, which measure the coordinates of the spatial and angular 
position of the aircraft, a radio altimeter and an on-board computer with a ground topography map 
stored in the memory (barometric instruments are not included) leads [2, p. 222] to problem (1)-(5) 
with 

II ° '011 . : . . .0  A= 0 ' 

C=diag(0,c2), D=diag(a2,0), Ro=diag(02,02) 

The model of errors in determining the coordinate and velocity of a horizontally flying aircraft using 
an inertial navigational system leads to the same problem [2, p. 159]. 

The problem was studied [2] under assumptions which distort the time scale. In the present paper 
exact solutions and asymptotic approximations are obtained. 

For the problem under consideration (6) takes the form of the first three equations in (11), and its 
solution is given by the first three formulae in (13). For such a choice of functions 

q 0i1022_022 2 * = = ~ 2 q  / 4  

q*= (C~ - C  2 - C 2 ) e  4~ -2(2C I +(C 2 + C3)cos2x + (C3 - C 2 ) s i n 2 x ) e  2~ +2 

The resulting formulae yield an exponentially decaying asymptotic forms for the matrix elements rq 

20 "! 
t]l ---- Pll  + 0 2 2 / q  =~T(  +O(e-2X))" 

202 I ~2=-.-a-T-(+O(e-2X)), z---~+oo 

403 
r22 = (1 + O(e-2X)) a"  

as opposed to the power function behaviour in formulae (5.103) of [2] obtained under the assumption 
Sj = O, which distorts the timescale (see [2, p. 162]). 

We remark that linear models of Kalman filtering usually provide an adequate description of the actual 
processes involving the observation of non-linear objects only within bounded time intervals. Therefore 
the results of this paper can only be applied once the duration of these intervals has been compared 
with the characteri,,aic time constant introduced in (12). 

The research rel~rted here was supported financially by the Russian Fund for Fundamental Research 
(93-011-1725). 
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